1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
| import numpy as np import torch from torch import nn, optim from torch.utils.data import Dataset, DataLoader import pandas as pd
class TrainDataset(Dataset): def __init__(self, filepath): df = pd.read_csv(filepath)
y_numpy = df.iloc[:, 1].values.astype(np.float32) self.y_data = torch.from_numpy(y_numpy).unsqueeze(dim=1)
df['Age'] = df['Age'].fillna(df['Age'].mean()) df['Fare'] = df['Fare'].fillna(df['Fare'].mean())
df['Sex_Encoded'] = df['Sex'].map({'male': 1, 'female': 0}).astype(np.float32)
df['Embarked'] = df['Embarked'].fillna('S') df_embarked_onehot = pd.get_dummies(df['Embarked'], prefix='Embarked', drop_first=True) df = pd.concat([df, df_embarked_onehot], axis=1)
feature_columns = ['Pclass', 'Age', 'SibSp', 'Parch', 'Fare', 'Sex_Encoded']
feature_columns.extend(df_embarked_onehot.columns.tolist())
df_x_final = df[feature_columns]
x_numpy = df_x_final.values.astype(np.float32) self.x_data = torch.from_numpy(x_numpy)
self.len = self.x_data.shape[0]
def __getitem__(self, index): return self.x_data[index], self.y_data[index]
def __len__(self): return self.len
class TestDataset(Dataset): def __init__(self, filepath): df = pd.read_csv(filepath) self.passenger_ids = df['PassengerId'].values
df['Age'] = df['Age'].fillna(df['Age'].mean()) df['Fare'] = df['Fare'].fillna(df['Fare'].mean())
df['Sex_Encoded'] = df['Sex'].map({'male': 1, 'female': 0}).astype(np.float32)
df['Embarked'] = df['Embarked'].fillna('S') df_embarked_onehot = pd.get_dummies(df['Embarked'], prefix='Embarked', drop_first=True) df = pd.concat([df, df_embarked_onehot], axis=1)
feature_columns = ['Pclass', 'Age', 'SibSp', 'Parch', 'Fare', 'Sex_Encoded']
feature_columns.extend(df_embarked_onehot.columns.tolist())
df_x_final = df[feature_columns]
x_numpy = df_x_final.values.astype(np.float32) self.x_data = torch.from_numpy(x_numpy)
self.len = self.x_data.shape[0]
def __getitem__(self, index): return self.x_data[index], self.passenger_ids[index]
def __len__(self): return self.len
train_dataset = TrainDataset(filepath='DataSet/titanic/train.csv') train_loader = DataLoader(dataset=train_dataset, batch_size=32, shuffle=True, num_workers=0)
test_dataset = TestDataset(filepath='DataSet/titanic/test.csv') test_loader = DataLoader(dataset=test_dataset, batch_size=32, shuffle=False, num_workers=0)
class TitanicNet(nn.Module): def __init__(self): super(TitanicNet, self).__init__() self.l1 = nn.Linear(8, 4) self.l2 = nn.Linear(4, 2) self.l3 = nn.Linear(2, 1) self.relu = nn.ReLU() self.sigmoid = nn.Sigmoid()
def forward(self, x): x = self.relu(self.l1(x)) x = self.relu(self.l2(x)) x = self.sigmoid(self.l3(x)) return x
my_model = TitanicNet() criterion = nn.BCELoss(reduction='mean') optimizer = optim.SGD(my_model.parameters(), lr=0.05)
def train(): total_batch_loss = 0.0 num_batches = 0 for i, data in enumerate(train_loader): x_data, y_data = data optimizer.zero_grad() y_pred = my_model(x_data) loss = criterion(y_pred, y_data) total_batch_loss += loss.item() num_batches += 1 loss.backward() optimizer.step() avg_loss = total_batch_loss / num_batches return avg_loss
def test(): """在测试集上进行推理(无标签),生成预测结果和 ID。""" my_model.eval() all_predictions = [] all_ids = []
print("\n--- 开始在测试集上进行推理 ---")
with torch.no_grad(): for x_data, passenger_ids in test_loader: outputs = my_model(x_data)
predicted_labels = (outputs >= 0.7).int().squeeze(dim=1)
all_predictions.extend(predicted_labels.numpy()) all_ids.extend(passenger_ids.numpy())
submission_df = pd.DataFrame({ 'PassengerId': all_ids, 'Survived': all_predictions })
print("--- 推理完成 ---") print(f"生成的预测总数:{len(all_predictions)}") print("前 5 个预测结果:") print(submission_df.head())
return submission_df
if __name__ == '__main__': for epoch_num in range(2000): l = train() if epoch_num % 200 == 199: print(f"epoch_num = {epoch_num}, loss = {l}")
submission = test()
submission.to_csv('DataSet/titanic/submission.csv', index=False)
|